欧美综合视频在线_国产乱码精品一区二区三区av _国产精品白浆_免费日本一区二区三区视频_波多野结衣家庭主妇_三级黄色片免费看_国产精品久久久一区二区三区_欧美一区二区黄色_狠狠色丁香九九婷婷综合五月 _亚洲一级二级三级在线免费观看

納米科技論文優選九篇

時間:2023-04-01 10:31:11

引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇納米科技論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。

納米科技論文

第1篇

1、各國競相出臺納米科技發展戰略和計劃

由于納米技術對國家未來經濟、社會發展及國防安全具有重要意義,世界各國(地區)紛紛將納米技術的研發作為21世紀技術創新的主要驅動器,相繼制定了發展戰略和計劃,以指導和推進本國納米科技的發展。目前,世界上已有50多個國家制定了國家級的納米技術計劃。一些國家雖然沒有專項的納米技術計劃,但其他計劃中也往往包含了納米技術相關的研發。

(1)發達國家和地區雄心勃勃

為了搶占納米科技的先機,美國早在2000年就率先制定了國家級的納米技術計劃(NNI),其宗旨是整合聯邦各機構的力量,加強其在開展納米尺度的科學、工程和技術開發工作方面的協調。2003年11月,美國國會又通過了《21世紀納米技術研究開發法案》,這標志著納米技術已成為聯邦的重大研發計劃,從基礎研究、應用研究到研究中心、基礎設施的建立以及人才的培養等全面展開。

日本政府將納米技術視為“日本經濟復興”的關鍵。第二期科學技術基本計劃將生命科學、信息通信、環境技術和納米技術作為4大重點研發領域,并制定了多項措施確保這些領域所需戰略資源(人才、資金、設備)的落實。之后,日本科技界較為徹底地貫徹了這一方針,積極推進從基礎性到實用性的研發,同時跨省廳重點推進能有效促進經濟發展和加強國際競爭力的研發。

歐盟在2002—2007年實施的第六個框架計劃也對納米技術給予了空前的重視。該計劃將納米技術作為一個最優先的領域,有13億歐元專門用于納米技術和納米科學、以知識為基礎的多功能材料、新生產工藝和設備等方面的研究。歐盟委員會還力圖制定歐洲的納米技術戰略,目前,已確定了促進歐洲納米技術發展的5個關鍵措施:增加研發投入,形成勢頭;加強研發基礎設施;從質和量方面擴大人才資源;重視工業創新,將知識轉化為產品和服務;考慮社會因素,趨利避險。另外,包括德國、法國、愛爾蘭和英國在內的多數歐盟國家還制定了各自的納米技術研發計劃。

(2)新興工業化經濟體瞄準先機

意識到納米技術將會給人類社會帶來巨大的影響,韓國、中國臺灣等新興工業化經濟體,為了保持競爭優勢,也紛紛制定納米科技發展戰略。韓國政府2001年制定了《促進納米技術10年計劃》,2002年頒布了新的《促進納米技術開發法》,隨后的2003年又頒布了《納米技術開發實施規則》。韓國政府的政策目標是融合信息技術、生物技術和納米技術3個主要技術領域,以提升前沿技術和基礎技術的水平;到2010年10年計劃結束時,韓國納米技術研發要達到與美國和日本等領先國家的水平,進入世界前5位的行列。

中國臺灣自1999年開始,相繼制定了《納米材料尖端研究計劃》、《納米科技研究計劃》,這些計劃以人才和核心設施建設為基礎,以追求“學術卓越”和“納米科技產業化”為目標,意在引領臺灣知識經濟的發展,建立產業競爭優勢。

(3)發展中大國奮力趕超

綜合國力和科技實力較強的發展中國家為了迎頭趕上發達國家納米科技發展的勢頭,也制定了自己的納米科技發展戰略。中國政府在2001年7月就了《國家納米科技發展綱要》,并先后建立了國家納米科技指導協調委員會、國家納米科學中心和納米技術專門委員會。目前正在制定中的國家中長期科技發展綱要將明確中國納米科技發展的路線圖,確定中國在目前和中長期的研發任務,以便在國家層面上進行指導與協調,集中力量、發揮優勢,爭取在幾個方面取得重要突破。鑒于未來最有可能的技術浪潮是納米技術,南非科技部正在制定一項國家納米技術戰略,可望在2005年度執行。印度政府也通過加大對從事材料科學研究的科研機構和項目的支持力度,加強材料科學中具有廣泛應用前景的納米技術的研究和開發。

2、納米科技研發投入一路攀升

納米科技已在國際間形成研發熱潮,現在無論是富裕的工業化大國還是渴望富裕的工業化中國家,都在對納米科學、技術與工程投入巨額資金,而且投資迅速增加。據歐盟2004年5月的一份報告稱,在過去10年里,世界公共投資從1997年的約4億歐元增加到了目前的30億歐元以上。私人的納米技術研究資金估計為20億歐元。這說明,全球對納米技術研發的年投資已達50億歐元。

美國的公共納米技術投資最多。在過去4年內,聯邦政府的納米技術研發經費從2000年的2.2億美元增加到2003年的7.5億美元,2005年將增加到9.82億美元。更重要的是,根據《21世紀納米技術研究開發法》,在2005~2008財年聯邦政府將對納米技術計劃投入37億美元,而且這還不包括國防部及其他部門將用于納米研發的經費。

日本目前是僅次于美國的第二大納米技術投資國。日本早在20世紀80年代就開始支持納米科學研究,近年來納米科技投入迅速增長,從2001年的4億美元激增至2003年的近8億美元,而2004年還將增長20%。

在歐洲,根據第六個框架計劃,歐盟對納米技術的資助每年約達7.5億美元,有些人估計可達9.15億美元。另有一些人估計,歐盟各國和歐盟對納米研究的總投資可能兩倍于美國,甚至更高。

中國期望今后5年內中央政府的納米技術研究支出達到2.4億美元左右;另外,地方政府也將支出2.4億~3.6億美元。中國臺灣計劃從2002~2007年在納米技術相關領域中投資6億美元,每年穩中有增,平均每年達1億美元。韓國每年的納米技術投入預計約為1.45億美元,而新加坡則達3.7億美元左右。

就納米科技人均公共支出而言,歐盟25國為2.4歐元,美國為3.7歐元,日本為6.2歐元。按照計劃,美國2006年的納米技術研發公共投資增加到人均5歐元,日本2004年增加到8歐元,因此歐盟與美日之間的差距有增大之勢。公共納米投資占GDP的比例是:歐盟為0.01%,美國為0.01%,日本為0.02%。

另外,據致力于納米技術行業研究的美國魯克斯資訊公司2004年的一份年度報告稱,很多私營企業對納米技術的投資也快速增加。美國的公司在這一領域的投入約為17億美元,占全球私營機構38億美元納米技術投資的46%。亞洲的企業將投資14億美元,占36%。歐洲的私營機構將投資6.5億美元,占17%。由于投資的快速增長,納米技術的創新時代必將到來。

3、世界各國納米科技發展各有千秋

各納米科技強國比較而言,美國雖具有一定的優勢,但現在尚無確定的贏家和輸家。

(1)在納米科技論文方面日、德、中三國不相上下

根據中國科技信息研究所進行的納米論文統計結果,2000—2002年,共有40370篇納米研究論文被《2000—2002年科學引文索引(SCI)》收錄。納米研究論文數量逐年增長,且增長幅度較大,2001年和2002年的增長率分別達到了30.22%和18.26%。

2000—2002年納米研究論文,美國以較大的優勢領先于其他國家,3年累計論文數超過10000篇,幾乎占全部論文產出的30%。日本(12.76%)、德國(11.28%)、中國(10.64%)和法國(7.89%)位居其后,它們各自的論文總數都超過了3000篇。而且以上5國2000—2002年每年的納米論文產出大都超過了1000篇,是納米研究最活躍的國家,也是納米研究實力最強的國家。中國的增長幅度最為突出,2000年中國納米論文比例還落后德國2個多百分點,到2002年已經超過德國,位居世界第三位,與日本接近。

在上述5國之后,英國、俄羅斯、意大利、韓國、西班牙發表的論文數也較多,各國3年累計論文總數都超過了1000篇,且每年的論文數排位都可以進入前10名。這5個國家可以列為納米研究較活躍的國家。

另外,如果歐盟各國作為一個整體,其論文量則超過36%,高于美國的29.46%。

(2)在申請納米技術發明專利方面美國獨占鰲頭

據統計:美國專利商標局2000—2002年共受理2236項關于納米技術的專利。其中最多的國家是美國(1454項),其次是日本(368項)和德國(118項)。由于專利數據來源美國專利商標局,所以美國的專利數量非常多,所占比例超過了60%。日本和德國分別以16.46%和5.28%的比例列在第二位和第三位。英國、韓國、加拿大、法國和中國臺灣的專利數也較多,所占比例都超過了1%。

專利反映了研究成果實用化的能力。多數國家納米論文數與專利數所占比例的反差較大,在論文數最多的20個國家和地區中,專利數所占比例超過論文數所占比例的國家和地區只有美國、日本和中國臺灣。這說明,很多國家和地區在納米技術研究上具備一定的實力,但比較側重于基礎研究,而實用化能力較弱。

(3)就整體而言納米科技大國各有所長

美國納米技術的應用研究在半導體芯片、癌癥診斷、光學新材料和生物分子追蹤等領域快速發展。隨著納米技術在癌癥診斷和生物分子追蹤中的應用,目前美國納米研究熱點已逐步轉向醫學領域。醫學納米技術已經被列為美國國家的優先科研計劃。在納米醫學方面,納米傳感器可在實驗室條件下對多種癌癥進行早期診斷,而且,已能在實驗室條件下對前列腺癌、直腸癌等多種癌癥進行早期診斷。2004年,美國國立衛生研究院癌癥研究所專門出臺了一項《癌癥納米技術計劃》,目的是將納米技術、癌癥研究與分子生物醫學相結合,實現2015年消除癌癥死亡和痛苦的目標;利用納米顆粒追蹤活性物質在生物體內的活動也是一個研究熱門,這對于研究艾滋病病毒、癌細胞等在人體內的活動情況非常有用,還可以用來檢測藥物對病毒的作用效果。利用納米顆粒追蹤病毒的研究也已有成果,未來5~10年有望商業化。

雖然醫學納米技術正成為納米科技的新熱點,納米技術在半導體芯片領域的應用仍然引人關注。美國科研人員正在加緊納米級半導體材料晶體管的應用研究,期望突破傳統的極限,讓芯片體積更小、速度更快。納米顆粒的自組裝技術是這一領域中最受關注的地方。不少科學家試圖利用化學反應來合成納米顆粒,并按照一定規則排列這些顆粒,使其成為體積小而運算快的芯片。這種技術本來有望取代傳統光刻法制造芯片的技術。在光學新材料方面,目前已有可控直徑5納米到幾百納米、可控長度達到幾百微米的納米導線。

日本納米技術的研究開發實力強大,某些方面處于世界領先水平,但尚未脫離基礎和應用研究階段,距離實用化還有相當一段路要走。在納米技術的研發上,日本最重視的是應用研究,尤其是納米新材料研究。除了碳納米管外,日本開發出多種不同結構的納米材料,如納米鏈、中空微粒、多層螺旋狀結構、富勒結構套富勒結構、納米管套富勒結構、酒杯疊酒杯狀結構等。

在制造方法上,日本不斷改進電弧放電法、化學氣相合成法和激光燒蝕法等現有方法,同時積極開發新的制造技術,特別是批量生產技術。細川公司展出的低溫連續燒結設備引起關注。它能以每小時數千克的速度制造粒徑在數十納米的單一和復合的超微粒材料。東麗和三菱化學公司應用大學開發的新技術能把制造碳納米材料的成本減至原來的1/10,兩三年內即可進入批量生產階段。

日本高度重視開發檢測和加工技術。目前廣泛應用的掃描隧道顯微鏡、原子力顯微鏡、近場光學顯微鏡等的性能不斷提高,并涌現了諸如數字式顯微鏡、內藏高級照相機顯微鏡、超高真空掃描型原子力顯微鏡等新產品。科學家村田和廣成功開發出亞微米噴墨印刷裝置,能應用于納米領域,在硅、玻璃、金屬和有機高分子等多種材料的基板上印制細微電路,是世界最高水平。

日本企業、大學和研究機構積極在信息技術、生物技術等領域內為納米技術尋找用武之地,如制造單個電子晶體管、分子電子元件等更細微、更高性能的元器件和量子計算機,解析分子、蛋白質及基因的結構等。不過,這些研究大都處于探索階段,成果為數不多。

歐盟在納米科學方面頗具實力,特別是在光學和光電材料、有機電子學和光電學、磁性材料、仿生材料、納米生物材料、超導體、復合材料、醫學材料、智能材料等方面的研究能力較強。

中國在納米材料及其應用、掃描隧道顯微鏡分析和單原子操縱等方面研究較多,主要以金屬和無機非金屬納米材料為主,約占80%,高分子和化學合成材料也是一個重要方面,而在納米電子學、納米器件和納米生物醫學研究方面與發達國家有明顯差距。

4、納米技術產業化步伐加快

目前,納米技術產業化尚處于初期階段,但展示了巨大的商業前景。據統計:2004年全球納米技術的年產值已經達到500億美元,2010年將達到14400億美元。為此,各納米技術強國為了盡快實現納米技術的產業化,都在加緊采取措施,促進產業化進程。

美國國家科研項目管理部門的管理者們認為,美國大公司自身的納米技術基礎研究不足,導致美國在該領域的開發應用缺乏動力,因此,嘗試建立一個由多所大學與大企業組成的研究中心,希望借此使納米技術的基礎研究和應用開發緊密結合在一起。美國聯邦政府與加利福尼亞州政府一起斥巨資在洛杉礬地區建立一個“納米科技成果轉化中心”,以便及時有效地將納米科技領域的基礎研究成果應用于產業界。該中心的主要工作有兩項:一是進行納米技術基礎研究;二是與大企業合作,使最新基礎研究成果盡快實現產業化。其研究領域涉及納米計算、納米通訊、納米機械和納米電路等許多方面,其中不少研究成果將被率先應用于美國國防工業。

美國的一些大公司也正在認真探索利用納米技術改進其產品和工藝的潛力。IBM、惠普、英特爾等一些IT公司有可能在中期內取得突破,并生產出商業產品。一個由專業、商業和學術組織組成的網絡在迅速擴大,其目的是共享信息,促進聯系,加速納米技術應用。

日本企業界也加強了對納米技術的投入。關西地區已有近百家企業與16所大學及國立科研機構聯合,不久前又建立了“關西納米技術推進會議”,以大力促進本地區納米技術的研發和產業化進程;東麗、三菱、富士通等大公司更是紛紛斥巨資建立納米技術研究所,試圖將納米技術融合進各自從事的產業中。

歐盟于2003年建立納米技術工業平臺,推動納米技術在歐盟成員國的應用。歐盟委員會指出:建立納米技術工業平臺的目的是使工程師、材料學家、醫療研究人員、生物學家、物理學家和化學家能夠協同作戰,把納米技術應用到信息技術、化妝品、化學產品和運輸領域,生產出更清潔、更安全、更持久和更“聰明”的產品,同時減少能源消耗和垃圾。歐盟希望通過建立納米技術工業平臺和增加納米技術研究投資使其在納米技術方面盡快趕上美國。

第2篇

納米耐磨符合圖層的運用

納米材料顆粒之間都存在著范德華力、庫侖力等,甚至有些顆粒還會和化學鍵結合,結果導致了陶瓷顆粒很容易出現團聚,而且顆粒愈小,團聚就越緊,在這種情況下,納米材料應有的良好性能就比較難以充分發揮出來。就解決方式而言,一般通過施加機械能,或者引發化學作用這兩種途徑進行解決,不過硬團聚由于顆粒之間結合的比較緊密,單純的通過化學作用是遠不能夠實現目標的,所以還需要另外施加一個比較大的機械力,例如剪切力、撞擊力等。通過這些里對材料的結合力進行破壞。

納米磁性液體在旋轉軸中的應用

一般而言,對于靜態的密封比較容易解決,通常可以采用塑料、金屬、橡膠等材料制作的O型環當做密封的元件,將其密封。但對于動態的密封,特別是旋轉條件下的密封則一直沒有好的解決方式。在高速、高真空條件下一般不能進行動態密封,而納米磁性液體則帶來了一種新的解決方式。納米技術對磁性液體在旋轉軸中的應用取得了很大的促進作用。我國南京大學已經成功進行了多種磁性液體的制成,比如硅油、水基、烷基、二脂基等。而在磁性液體的應用方面,電子計算機的硬盤在防塵密封方面就普遍采用了磁性液體。而在劑的制造方面,對新型劑的制造也起到了較大的促進作用。

(1)納米磁性液體在旋轉軸中應用的尺寸效應在納米技術領域,其顯著成果之一就是在旋轉軸中,對傳統的尺寸單位進行了縮小,以前的計量單位級為毫米,而今則是納米級,而1納米僅相當于1毫米的百萬分之一,如果運用在機械工程之中,那么機械的體積會因為納米技術的應用而極大的降低,在此基礎上就有了微型機械為代表的新型機械的誕生和生產。實際上,這種微型化并不僅僅是單純意義上的尺度上發生了重大變化,而更多的是指可以成批進行制作生產微傳感器、集合微結構、微驅動器、微電路等處置裝置于一體的微型機電系統。系統中的大部分都運用了納米技術成果,因此,從某種意義上說,其已經遠遠超出了傳統機械的概念和范疇。可以說微型機械是以現代科學技術為基礎,在整個納米科技中具有重要地位,采用嶄新技術路線和思維方式的具有劃時代意義的產物。

第3篇

關鍵詞:納米科學納米技術納米管納米線納米團簇半導體

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

納米科學和技術所涉及的是具有尺寸在1-100納米范圍的結構的制備和表征。在這個領域的研究舉世矚目。例如,美國政府2001財政年度在納米尺度科學上的投入要比2000財政年增長83%,達到5億美金。有兩個主要的理由導致人們對納米尺度結構和器件的興趣的增加。第一個理由是,納米結構(尺度小于20納米)足夠小以至于量子力學效應占主導地位,這導致非經典的行為,譬如,量子限制效應和分立化的能態、庫侖阻塞以及單電子邃穿等。這些現象除引起人們對基礎物理的興趣外,亦給我們帶來全新的器件制備和功能實現的想法和觀念,例如,單電子輸運器件和量子點激光器等。第二個理由是,在半導體工業有器件持續微型化的趨勢。根據“國際半導體技術路向(2001)“雜志,2005年前動態隨機存取存儲器(DRAM)和微處理器(MPU)的特征尺寸預期降到80納米,而MPU中器件的柵長更是預期降到45納米。然而,到2003年在MPU制造中一些不知其解的問題預期就會出現。到2005年類似的問題將預期出現在DRAM的制造過程中。半導體器件特征尺寸的深度縮小不僅要求新型光刻技術保證能使尺度刻的更小,而且要求全新的器件設計和制造方案,因為當MOS器件的尺寸縮小到一定程度時基礎物理極限就會達到。隨著傳統器件尺寸的進一步縮小,量子效應比如載流子邃穿會造成器件漏電流的增加,這是我們不想要的但卻是不可避免的。因此,解決方案將會是制造基于量子效應操作機制的新型器件,以便小物理尺寸對器件功能是有益且必要的而不是有害的。如果我們能夠制造納米尺度的器件,我們肯定會獲益良多。譬如,在電子學上,單電子輸運器件如單電子晶體管、旋轉柵門管以及電子泵給我們帶來諸多的微尺度好處,他們僅僅通過數個而非以往的成千上萬的電子來運作,這導致超低的能量消耗,在功率耗散上也顯著減弱,以及帶來快得多的開關速度。在光電子學上,量子點激光器展現出低閾值電流密度、弱閾值電流溫度依賴以及大的微分增益等優點,其中大微分增益可以產生大的調制帶寬。在傳感器件應用上,納米傳感器和納米探測器能夠測量極其微量的化學和生物分子,而且開啟了細胞內探測的可能性,這將導致生物醫學上迷你型的侵入診斷技術出現。納米尺度量子點的其他器件應用,比如,鐵磁量子點磁記憶器件、量子點自旋過濾器及自旋記憶器等,也已經被提出,可以肯定這些應用會給我們帶來許多潛在的好處。總而言之,無論是從基礎研究(探索基于非經典效應的新物理現象)的觀念出發,還是從應用(受因結構減少空間維度而帶來的優點以及因應半導體器件特征尺寸持續減小而需要這兩個方面的因素驅使)的角度來看,納米結構都是令人極其感興趣的。

II.納米結構的制備———首次浪潮

有兩種制備納米結構的基本方法:build-up和build-down。所謂build-up方法就是將已預制好的納米部件(納米團簇、納米線以及納米管)組裝起來;而build-down方法就是將納米結構直接地淀積在襯底上。前一種方法包含有三個基本步驟:1)納米部件的制備;2)納米部件的整理和篩選;3)納米部件組裝成器件(這可以包括不同的步驟如固定在襯底及電接觸的淀積等等)。“build-up“的優點是個體納米部件的制備成本低以及工藝簡單快捷。有多種方法如氣相合成以及膠體化學合成可以用來制備納米元件。目前,在國內、在香港以及在世界上許多的實驗室里這些方法正在被用來合成不同材料的納米線、納米管以及納米團簇。這些努力已經證明了這些方法的有效性。這些合成方法的主要缺點是材料純潔度較差、材料成份難以控制以及相當大的尺寸和形狀的分布。此外,這些納米結構的合成后工藝再加工相當困難。特別是,如何整理和篩選有著窄尺寸分布的納米元件是一個至關重要的問題,這一問題迄今仍未有解決。盡管存在如上的困難和問題,“build-up“依然是一種能合成大量納米團簇以及納米線、納米管的有效且簡單的方法。可是這些合成的納米結構直到目前為止仍然難以有什么實際應用,這是因為它們缺乏實用所苛求的尺寸、組份以及材料純度方面的要求。而且,因為同樣的原因用這種方法合成的納米結構的功能性質相當差。不過上述方法似乎適宜用來制造傳感器件以及生物和化學探測器,原因是垂直于襯底生長的納米結構適合此類的應用要求。

“Build-down”方法提供了杰出的材料純度控制,而且它的制造機理與現代工業裝置相匹配,換句話說,它是利用廣泛已知的各種外延技術如分子束外延(MBE)、化學氣相淀積(MOVCD)等來進行器件制造的傳統方法。“Build-down”方法的缺點是較高的成本。在“build-down”方法中有幾條不同的技術路徑來制造納米結構。最簡單的一種,也是最早使用的一種是直接在襯底上刻蝕結構來得到量子點或者量子線。另外一種是包括用離子注入來形成納米結構。這兩種技術都要求使用開有小尺寸窗口的光刻版。第三種技術是通過自組裝機制來制造量子點結構。自組裝方法是在晶格失配的材料中自然生長納米尺度的島。在Stranski-Krastanov生長模式中,當材料生長到一定厚度后,二維的逐層生長將轉換成三維的島狀生長,這時量子點就會生成。業已證明基于自組裝量子點的激光器件具有比量子阱激光器更好的性能。量子點器件的飽和材料增益要比相應的量子阱器件大50倍,微分增益也要高3個量級。閾值電流密度低于100A/cm2、室溫輸出功率在瓦特量級(典型的量子阱基激光器的輸出功率是5-50mW)的連續波量子點激光器也已經報道。無論是何種材料系統,量子點激光器件都預期具有低閾值電流密度,這預示目前還要求在大閾值電流條件下才能激射的寬帶系材料如III組氮化物基激光器還有很大的顯著改善其性能的空間。目前這類器件的性能已經接近或達到商業化器件所要求的指標,預期量子點基的此類材料激光器將很快在市場上出現。量子點基光電子器件的進一步改善主要取決于量子點幾何結構的優化。雖然在生長條件上如襯底溫度、生長元素的分氣壓等的變化能夠在一定程度上控制點的尺寸和密度,自組裝量子點還是典型底表現出在大小、密度及位置上的隨機變化,其中僅僅是密度可以粗糙地控制。自組裝量子點在尺寸上的漲落導致它們的光發射的非均勻展寬,因此減弱了使用零維體系制作器件所期望的優點。由于量子點尺寸的統計漲落和位置的隨機變化,一層含有自組裝量子點材料的光致發光譜典型地很寬。在豎直疊立的多層量子點結構中這種譜展寬效應可以被減弱。如果隔離層足夠薄,豎直疊立的多層量子點可典型地展現出豎直對準排列,這可以有效地改善量子點的均勻性。然而,當隔離層薄的時候,在一列量子點中存在載流子的耦合,這將失去因使用零維系統而帶來的優點。怎樣優化量子點的尺寸和隔離層的厚度以便既能獲得好均勻性的量子點又同時保持載流子能夠限制在量子點的個體中對于獲得器件的良好性能是至關重要的。

很清楚納米科學的首次浪潮發生在過去的十年中。在這段時期,研究者已經證明了納米結構的許多嶄新的性質。學者們更進一步征明可以用“build-down”或者“build-up”方法來進行納米結構制造。這些成果向我們展示,如果納米結構能夠大量且廉價地被制造出來,我們必將收獲更多的成果。

在未來的十年中,納米科學和技術的第二次浪潮很可能發生。在這個新的時期,科學家和工程師需要征明納米結構的潛能以及期望功能能夠得到兌現。只有獲得在尺寸、成份、位序以及材料純度上良好可控能力并成功地制造出實用器件才能實現人們對納米器件所期望的功能。因此,納米科學的下次浪潮的關鍵點是納米結構的人為可控性。

III.納米結構尺寸、成份、位序以及密度的控制——第二次浪潮

為了充分發揮量子點的優勢之處,我們必須能夠控制量子點的位置、大小、成份已及密度。其中一個可行的方法是將量子點生長在已經預刻有圖形的襯底上。由于量子點的橫向尺寸要處在10-20納米范圍(或者更小才能避免高激發態子能級效應,如對于GaN材料量子點的橫向尺寸要小于8納米)才能實現室溫工作的光電子器件,在襯底上刻蝕如此小的圖形是一項挑戰性的技術難題。對于單電子晶體管來說,如果它們能在室溫下工作,則要求量子點的直徑要小至1-5納米的范圍。這些微小尺度要求已超過了傳統光刻所能達到的精度極限。有幾項技術可望用于如此的襯底圖形制作。

—電子束光刻通常可以用來制作特征尺度小至50納米的圖形。如果特殊薄膜能夠用作襯底來最小化電子散射問題,那特征尺寸小至2納米的圖形可以制作出來。在電子束光刻中的電子散射因為所謂近鄰干擾效應(proximityeffect)而嚴重影響了光刻的極限精度,這個效應造成制備空間上緊鄰的納米結構的困難。這項技術的主要缺點是相當費時。例如,刻寫一張4英寸的硅片需要時間1小時,這不適宜于大規模工業生產。電子束投影系統如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在發展之中以便使這項技術較適于用于規模生產。目前,耗時和近鄰干擾效應這兩個問題還沒有得到解決。

—聚焦離子束光刻是一種機制上類似于電子束光刻的技術。但不同于電子束光刻的是這種技術并不受在光刻膠中的離子散射以及從襯底來的離子背散射影響。它能刻出特征尺寸細到6納米的圖形,但它也是一種耗時的技術,而且高能離子束可能造成襯底損傷。

—掃描微探針術可以用來劃刻或者氧化襯底表面,甚至可以用來操縱單個原子和分子。最常用的方法是基于材料在探針作用下引入的高度局域化增強的氧化機制的。此項技術已經用來刻劃金屬(Ti和Cr)、半導體(Si和GaAs)以及絕緣材料(Si3N4和silohexanes),還用在LB膜和自聚集分子單膜上。此種方法具有可逆和簡單易行等優點。引入的氧化圖形依賴于實驗條件如掃描速度、樣片偏壓以及環境濕度等。空間分辨率受限于針尖尺寸和形狀(雖然氧化區域典型地小于針尖尺寸)。這項技術已用于制造有序的量子點陣列和單電子晶體管。這項技術的主要缺點是處理速度慢(典型的刻寫速度為1mm/s量級)。然而,最近在原子力顯微術上的技術進展—使用懸臂樑陣列已將掃描速度提高到4mm/s。此項技術的顯著優點是它的杰出的分辨率和能產生任意幾何形狀的圖形能力。但是,是否在刻寫速度上的改善能使它適用于除制造光刻版和原型器件之外的其他目的還有待于觀察。直到目前為止,它是一項能操控單個原子和分子的唯一技術。

—多孔膜作為淀積掩版的技術。多孔膜能用多種光刻術再加腐蝕來制備,它也可以用簡單的陽極氧化方法來制備。鋁膜在酸性腐蝕液中陽極氧化就可以在鋁膜上產生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范圍。制備多孔膜的其他方法是從納米溝道玻璃膜復制。用這項技術已制造出含有細至40nm的空洞的鎢、鉬、鉑以及金膜。

—倍塞(diblock)共聚物圖形制作術是一種基于不同聚合物的混合物能夠產生可控及可重復的相分離機制的技術。目前,經過反應離子刻蝕后,在旋轉涂敷的倍塞共聚物層中產生的圖形已被成功地轉移到Si3N4膜上,圖形中空洞直徑20nm,空洞之間間距40nm。在聚苯乙烯基體中的自組織形成的聚異戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱體)可以被臭氧去掉或者通過鋨染色而保留下來。在第一種情況,空洞能夠在氮化硅上產生;在第二種情況,島狀結構能夠產生。目前利用倍塞共聚物光刻技術已制造出GaAs納米結構,結構的側向特征尺寸約為23nm,密度高達1011/cm2。

—與倍塞共聚物圖形制作術緊密相關的一項技術是納米球珠光刻術。此項技術的基本思路是將在旋轉涂敷的球珠膜中形成的圖形轉移到襯底上。各種尺寸的聚合物球珠是商業化的產品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比較困難的。用球珠單層膜已能制備出特征尺寸約為球珠直徑1/5的三角形圖形。雙層膜納米球珠掩膜版也已被制作出。能夠在金屬、半導體以及絕緣體襯底上使用納米球珠光刻術的能力已得到確認。納米球珠光刻術(納米球珠膜的旋轉涂敷結合反應離子刻蝕)已被用來在一些半導體表面上制造空洞和柱狀體納米結構。

—將圖形從母體版轉移到襯底上的其他光刻技術。幾種所謂“軟光刻“方法,比如復制鑄模法、微接觸印刷法、溶劑輔助鑄模法以及用硬模版浮雕法等已被探索開發。其中微接觸印刷法已被證明只能用來刻制特征尺寸大于100nm的圖形。復制鑄模法的可能優點是ellastometric聚合物可被用來制作成一個戳子,以便可用同一個戳子通過對戳子的機械加壓能夠制作不同側向尺寸的圖形。在溶劑輔助鑄模法和用硬模版浮雕法(或通常稱之為納米壓印術)之間的主要差異是,前者中溶劑被用于軟化聚合物,而后者中軟化聚合物依靠的是溫度變化。溶劑輔助鑄模法的可能優點是不需要加熱。納米壓印術已被證明可用來制作具有容量達400Gb/in2的納米激光光盤,在6英寸硅片上刻制亞100nm分辨的圖形,刻制10nmX40nm面積的長方形,以及在4英寸硅片上進行圖形刻制。除傳統的平面納米壓印光刻法之外,滾軸型納米壓印光刻法也已被提出。在此類技術中溫度被發現是一個關鍵因素。此外,應該選用具有較低的玻璃化轉變溫度的聚合物。為了取得高產,下列因素要解決:

1)大的戳子尺寸

2)高圖形密度戳子

3)低穿刺(lowsticking)

4)壓印溫度和壓力的優化

5)長戳子壽命。

具有低穿刺率的大尺寸戳子已經被制作出來。已有少量研究工作在試圖優化壓印溫度和壓力,但顯然需要進行更多的研究工作才能得到溫度和壓力的優化參數。高圖形密度戳子的制作依然在發展之中。還沒有足夠量的工作來研究戳子的壽命問題。曾有研究報告報道,覆蓋有超薄的特氟隆類薄膜的模板可以用來進行50次的浮刻而不需要中間清洗。報告指出最大的性能退化來自于嵌在戳子和聚合物之間的灰塵顆粒。如果戳子是從ellastometric母版制作出來的,抗穿刺層可能需要使用,而且進行大約5次壓印后需要更換。值得關心的其他可能問題包括鑲嵌的灰塵顆引起的戳子損傷或聚合物中圖形損傷,以及連續壓印之間戳子的清洗需要等。盡管進一步的優化和改良是必需的,但此項技術似乎有希望獲得高生產率。壓印過程包括對準、加熱及冷卻循環等,整個過程所需時間大約20分鐘。使用具有較低玻璃化轉換溫度的聚合物可以縮短加熱和冷卻循環所需時間,因此可以縮短整個壓印過程時間。

IV.納米制造所面對的困難和挑戰

上述每一種用于在襯底上圖形刻制的技術都有其優點和缺點。目前,似乎沒有哪個單一種技術可以用來高產量地刻制納米尺度且任意形狀的圖形。我們可以將圖形刻制的全過程分成下列步驟:

1.在一塊模版上刻寫圖形

2.在過渡性或者功能性材料上復制模版上的圖形

3.轉移在過渡性或者功能性材料上復制的圖形。

很顯然第二步是最具挑戰性的一步。先前描述的各項技術,例如電子束光刻或者掃描微探針光刻技術,已經能夠刻寫非常細小的圖形。然而,這些技術都因相當費時而不適于規模生產。納米壓印術則因可作多片并行處理而可能解決規模生產問題。此項技術似乎很有希望,但是在它能被廣泛應用之前現存的嚴重的材料問題必須加以解決。納米球珠和倍塞共聚物光刻術則提供了將第一步和第二步整合的解決方案。在這些技術中,圖形由球珠的尺寸或者倍塞共聚物的成分來確定。然而,用這兩種光刻術刻寫的納米結構的形狀非常有限。當這些技術被人們看好有很大的希望用來刻寫圖形以便生長出有序的納米量子點陣列時,它們卻完全不適于用來刻制任意形狀和復雜結構的圖形。為了能夠制造出高質量的納米器件,不但必須能夠可靠地將圖形轉移到功能材料上,還必須保證在刻蝕過程中引入最小的損傷。濕法腐蝕技術典型地不產生或者產生最小的損傷,可是濕法腐蝕并不十分適于制備需要陡峭側墻的結構,這是因為在掩模版下一定程度的鉆蝕是不可避免的,而這個鉆蝕決定性地影響微小結構的刻制。另一方面,用干法刻蝕技術,譬如,反應離子刻蝕(RIE)或者電子回旋共振(ECR)刻蝕,在優化條件下可以獲得陡峭的側墻。直到今天大多數刻蝕研究都集中于刻蝕速度以及刻蝕出垂直墻的能力,而關于刻蝕引入損傷的研究嚴重不足。已有研究表明,能在表面下100nm深處探測到刻蝕引入的損傷。當器件中的個別有源區尺寸小于100nm時,如此大的損傷是不能接受的。還有就是因為所有的納米結構都有大的表面-體積比,必須盡可能地減少在納米結構表面或者靠近的任何缺陷。

隨著器件持續微型化的趨勢的發展,普通光刻技術的精度將很快達到它的由光的衍射定律以及材料物理性質所確定的基本物理極限。通過采用深紫外光和相移版,以及修正光學近鄰干擾效應等措施,特征尺寸小至80nm的圖形已能用普通光刻技術制備出。然而不大可能用普通光刻技術再進一步顯著縮小尺寸。采用X光和EUV的光刻技術仍在研發之中,可是發展這些技術遇到在光刻膠以及模版制備上的諸多困難。目前來看,雖然也有一些具挑戰性的問題需要解決,特別是需要克服電子束散射以及相關聯的近鄰干擾效應問題,但投影式電子束光刻似乎是有希望的一種技術。掃描微探針技術提供了能分辨單個原子或分子的無可匹敵的精度,可是此項技術卻有固有的慢速度,目前還不清楚通過給它加裝陣列懸臂樑能否使它達到可以接受的刻寫速度。利用轉移在自組裝薄膜中形成的圖形的技術,例如倍塞共聚物以及納米球珠刻寫技術則提供了實現成本不是那么昂貴的大面積圖形刻寫的一種可能途徑。然而,在這種方式下形成的圖形僅局限于點狀或者柱狀圖形。對于制造相對簡單的器件而言,此類技術是足夠用的,但并不能解決微電子工業所面對的問題。需要將圖形從一張模版復制到聚合物膜上的各種所謂“軟光刻“方法提供了一種并行刻寫的技術途徑。模版可以用其他慢寫技術來刻制,然后在模版上的圖形可以通過要么熱輔助要么溶液輔助的壓印法來復制。同一塊模版可以用來刻寫多塊襯底,而且不像那些依賴化學自組裝圖形形成機制的方法,它可以用來刻制任意形狀的圖形。然而,要想獲得高生產率,某些技術問題如穿刺及因灰塵導致的損傷等問題需要加以解決。對一個理想的納米刻寫技術而言,它的運行和維修成本應該低,它應具備可靠地制備尺寸小但密度高的納米結構的能力,還應有在非平面上刻制圖形的能力以及制備三維結構的功能。此外,它也應能夠做高速并行操作,而且引入的缺陷密度要低。然而時至今日,仍然沒有任何一項能制作亞100nm圖形的單項技術能同時滿足上述所有條件。現在還難說是否上述技術中的一種或者它們的某種組合會取代傳統的光刻技術。究竟是現有刻寫技術的組合還是一種全新的技術會成為最終的納米刻寫技術還有待于觀察。

另一項挑戰是,為了更新我們關于納米結構的認識和知識,有必要改善現有的表征技術或者發展一種新技術能夠用來表征單個納米尺度物體。由于自組裝量子點在尺寸上的自然漲落,可信地表征單個納米結構的能力對于研究這些結構的物理性質是絕對至關重要的。目前表征單個納米結構的能力非常有限。譬如,沒有一種結構表征工具能夠用來確定一個納米結構的表面結構到0.1À的精度或者更佳。透射電子顯微術(TEM)能夠用來研究一個晶體結構的內部情況,但是它不能提供有關表面以及靠近表面的原子排列情況的信息。掃描隧道顯微術(STM)和原子力顯微術(AFM)能夠給出表面某區域的形貌,但它們并不能提供定量結構信息好到能仔細理解表面性質所要求的精度。當近場光學方法能夠給出局部區域光譜信息時,它們能給出的關于局部雜質濃度的信息則很有限。除非目前用來表征表面和體材料的技術能夠擴展到能夠用來研究單個納米體的表面和內部情況,否則能夠得到的有關納米結構的所有重要結構和組份的定量信息非常有限。

V.展望

第4篇

關鍵詞:納米科學納米技術納米管納米線納米團簇半導體

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

納米科學和技術所涉及的是具有尺寸在1-100納米范圍的結構的制備和表征。在這個領域的研究舉世矚目。例如,美國政府2001財政年度在納米尺度科學上的投入要比2000財政年增長83%,達到5億美金。有兩個主要的理由導致人們對納米尺度結構和器件的興趣的增加。第一個理由是,納米結構(尺度小于20納米)足夠小以至于量子力學效應占主導地位,這導致非經典的行為,譬如,量子限制效應和分立化的能態、庫侖阻塞以及單電子邃穿等。這些現象除引起人們對基礎物理的興趣外,亦給我們帶來全新的器件制備和功能實現的想法和觀念,例如,單電子輸運器件和量子點激光器等。第二個理由是,在半導體工業有器件持續微型化的趨勢。根據“國際半導體技術路向(2001)“雜志,2005年前動態隨機存取存儲器(DRAM)和微處理器(MPU)的特征尺寸預期降到80納米,而MPU中器件的柵長更是預期降到45納米。然而,到2003年在MPU制造中一些不知其解的問題預期就會出現。到2005年類似的問題將預期出現在DRAM的制造過程中。半導體器件特征尺寸的深度縮小不僅要求新型光刻技術保證能使尺度刻的更小,而且要求全新的器件設計和制造方案,因為當MOS器件的尺寸縮小到一定程度時基礎物理極限就會達到。隨著傳統器件尺寸的進一步縮小,量子效應比如載流子邃穿會造成器件漏電流的增加,這是我們不想要的但卻是不可避免的。因此,解決方案將會是制造基于量子效應操作機制的新型器件,以便小物理尺寸對器件功能是有益且必要的而不是有害的。如果我們能夠制造納米尺度的器件,我們肯定會獲益良多。譬如,在電子學上,單電子輸運器件如單電子晶體管、旋轉柵門管以及電子泵給我們帶來諸多的微尺度好處,他們僅僅通過數個而非以往的成千上萬的電子來運作,這導致超低的能量消耗,在功率耗散上也顯著減弱,以及帶來快得多的開關速度。在光電子學上,量子點激光器展現出低閾值電流密度、弱閾值電流溫度依賴以及大的微分增益等優點,其中大微分增益可以產生大的調制帶寬。在傳感器件應用上,納米傳感器和納米探測器能夠測量極其微量的化學和生物分子,而且開啟了細胞內探測的可能性,這將導致生物醫學上迷你型的侵入診斷技術出現。納米尺度量子點的其他器件應用,比如,鐵磁量子點磁記憶器件、量子點自旋過濾器及自旋記憶器等,也已經被提出,可以肯定這些應用會給我們帶來許多潛在的好處。總而言之,無論是從基礎研究(探索基于非經典效應的新物理現象)的觀念出發,還是從應用(受因結構減少空間維度而帶來的優點以及因應半導體器件特征尺寸持續減小而需要這兩個方面的因素驅使)的角度來看,納米結構都是令人極其感興趣的。

II.納米結構的制備———首次浪潮

有兩種制備納米結構的基本方法:build-up和build-down。所謂build-up方法就是將已預制好的納米部件(納米團簇、納米線以及納米管)組裝起來;而build-down方法就是將納米結構直接地淀積在襯底上。前一種方法包含有三個基本步驟:1)納米部件的制備;2)納米部件的整理和篩選;3)納米部件組裝成器件(這可以包括不同的步驟如固定在襯底及電接觸的淀積等等)。“build-up“的優點是個體納米部件的制備成本低以及工藝簡單快捷。有多種方法如氣相合成以及膠體化學合成可以用來制備納米元件。目前,在國內、在香港以及在世界上許多的實驗室里這些方法正在被用來合成不同材料的納米線、納米管以及納米團簇。這些努力已經證明了這些方法的有效性。這些合成方法的主要缺點是材料純潔度較差、材料成份難以控制以及相當大的尺寸和形狀的分布。此外,這些納米結構的合成后工藝再加工相當困難。特別是,如何整理和篩選有著窄尺寸分布的納米元件是一個至關重要的問題,這一問題迄今仍未有解決。盡管存在如上的困難和問題,“build-up“依然是一種能合成大量納米團簇以及納米線、納米管的有效且簡單的方法。可是這些合成的納米結構直到目前為止仍然難以有什么實際應用,這是因為它們缺乏實用所苛求的尺寸、組份以及材料純度方面的要求。而且,因為同樣的原因用這種方法合成的納米結構的功能性質相當差。不過上述方法似乎適宜用來制造傳感器件以及生物和化學探測器,原因是垂直于襯底生長的納米結構適合此類的應用要求。

“Build-down”方法提供了杰出的材料純度控制,而且它的制造機理與現代工業裝置相匹配,換句話說,它是利用廣泛已知的各種外延技術如分子束外延(MBE)、化學氣相淀積(MOVCD)等來進行器件制造的傳統方法。“Build-down”方法的缺點是較高的成本。在“build-down”方法中有幾條不同的技術路徑來制造納米結構。最簡單的一種,也是最早使用的一種是直接在襯底上刻蝕結構來得到量子點或者量子線。另外一種是包括用離子注入來形成納米結構。這兩種技術都要求使用開有小尺寸窗口的光刻版。第三種技術是通過自組裝機制來制造量子點結構。自組裝方法是在晶格失配的材料中自然生長納米尺度的島。在Stranski-Krastanov生長模式中,當材料生長到一定厚度后,二維的逐層生長將轉換成三維的島狀生長,這時量子點就會生成。業已證明基于自組裝量子點的激光器件具有比量子阱激光器更好的性能。量子點器件的飽和材料增益要比相應的量子阱器件大50倍,微分增益也要高3個量級。閾值電流密度低于100A/cm2、室溫輸出功率在瓦特量級(典型的量子阱基激光器的輸出功率是5-50mW)的連續波量子點激光器也已經報道。無論是何種材料系統,量子點激光器件都預期具有低閾值電流密度,這預示目前還要求在大閾值電流條件下才能激射的寬帶系材料如III組氮化物基激光器還有很大的顯著改善其性能的空間。目前這類器件的性能已經接近或達到商業化器件所要求的指標,預期量子點基的此類材料激光器將很快在市場上出現。量子點基光電子器件的進一步改善主要取決于量子點幾何結構的優化。雖然在生長條件上如襯底溫度、生長元素的分氣壓等的變化能夠在一定程度上控制點的尺寸和密度,自組裝量子點還是典型底表現出在大小、密度及位置上的隨機變化,其中僅僅是密度可以粗糙地控制。自組裝量子點在尺寸上的漲落導致它們的光發射的非均勻展寬,因此減弱了使用零維體系制作器件所期望的優點。由于量子點尺寸的統計漲落和位置的隨機變化,一層含有自組裝量子點材料的光致發光譜典型地很寬。在豎直疊立的多層量子點結構中這種譜展寬效應可以被減弱。如果隔離層足夠薄,豎直疊立的多層量子點可典型地展現出豎直對準排列,這可以有效地改善量子點的均勻性。然而,當隔離層薄的時候,在一列量子點中存在載流子的耦合,這將失去因使用零維系統而帶來的優點。怎樣優化量子點的尺寸和隔離層的厚度以便既能獲得好均勻性的量子點又同時保持載流子能夠限制在量子點的個體中對于獲得器件的良好性能是至關重要的。

很清楚納米科學的首次浪潮發生在過去的十年中。在這段時期,研究者已經證明了納米結構的許多嶄新的性質。學者們更進一步征明可以用“build-down”或者“build-up”方法來進行納米結構制造。這些成果向我們展示,如果納米結構能夠大量且廉價地被制造出來,我們必將收獲更多的成果。

在未來的十年中,納米科學和技術的第二次浪潮很可能發生。在這個新的時期,科學家和工程師需要征明納米結構的潛能以及期望功能能夠得到兌現。只有獲得在尺寸、成份、位序以及材料純度上良好可控能力并成功地制造出實用器件才能實現人們對納米器件所期望的功能。因此,納米科學的下次浪潮的關鍵點是納米結構的人為可控性。

III.納米結構尺寸、成份、位序以及密度的控制——第二次浪潮

為了充分發揮量子點的優勢之處,我們必須能夠控制量子點的位置、大小、成份已及密度。其中一個可行的方法是將量子點生長在已經預刻有圖形的襯底上。由于量子點的橫向尺寸要處在10-20納米范圍(或者更小才能避免高激發態子能級效應,如對于GaN材料量子點的橫向尺寸要小于8納米)才能實現室溫工作的光電子器件,在襯底上刻蝕如此小的圖形是一項挑戰性的技術難題。對于單電子晶體管來說,如果它們能在室溫下工作,則要求量子點的直徑要小至1-5納米的范圍。這些微小尺度要求已超過了傳統光刻所能達到的精度極限。有幾項技術可望用于如此的襯底圖形制作。

—電子束光刻通常可以用來制作特征尺度小至50納米的圖形。如果特殊薄膜能夠用作襯底來最小化電子散射問題,那特征尺寸小至2納米的圖形可以制作出來。在電子束光刻中的電子散射因為所謂近鄰干擾效應(proximityeffect)而嚴重影響了光刻的極限精度,這個效應造成制備空間上緊鄰的納米結構的困難。這項技術的主要缺點是相當費時。例如,刻寫一張4英寸的硅片需要時間1小時,這不適宜于大規模工業生產。電子束投影系統如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在發展之中以便使這項技術較適于用于規模生產。目前,耗時和近鄰干擾效應這兩個問題還沒有得到解決。

—聚焦離子束光刻是一種機制上類似于電子束光刻的技術。但不同于電子束光刻的是這種技術并不受在光刻膠中的離子散射以及從襯底來的離子背散射影響。它能刻出特征尺寸細到6納米的圖形,但它也是一種耗時的技術,而且高能離子束可能造成襯底損傷。

—掃描微探針術可以用來劃刻或者氧化襯底表面,甚至可以用來操縱單個原子和分子。最常用的方法是基于材料在探針作用下引入的高度局域化增強的氧化機制的。此項技術已經用來刻劃金屬(Ti和Cr)、半導體(Si和GaAs)以及絕緣材料(Si3N4和silohexanes),還用在LB膜和自聚集分子單膜上。此種方法具有可逆和簡單易行等優點。引入的氧化圖形依賴于實驗條件如掃描速度、樣片偏壓以及環境濕度等。空間分辨率受限于針尖尺寸和形狀(雖然氧化區域典型地小于針尖尺寸)。這項技術已用于制造有序的量子點陣列和單電子晶體管。這項技術的主要缺點是處理速度慢(典型的刻寫速度為1mm/s量級)。然而,最近在原子力顯微術上的技術進展—使用懸臂樑陣列已將掃描速度提高到4mm/s。此項技術的顯著優點是它的杰出的分辨率和能產生任意幾何形狀的圖形能力。但是,是否在刻寫速度上的改善能使它適用于除制造光刻版和原型器件之外的其他目的還有待于觀察。直到目前為止,它是一項能操控單個原子和分子的唯一技術。

—多孔膜作為淀積掩版的技術。多孔膜能用多種光刻術再加腐蝕來制備,它也可以用簡單的陽極氧化方法來制備。鋁膜在酸性腐蝕液中陽極氧化就可以在鋁膜上產生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范圍。制備多孔膜的其他方法是從納米溝道玻璃膜復制。用這項技術已制造出含有細至40nm的空洞的鎢、鉬、鉑以及金膜。

—倍塞(diblock)共聚物圖形制作術是一種基于不同聚合物的混合物能夠產生可控及可重復的相分離機制的技術。目前,經過反應離子刻蝕后,在旋轉涂敷的倍塞共聚物層中產生的圖形已被成功地轉移到Si3N4膜上,圖形中空洞直徑20nm,空洞之間間距40nm。在聚苯乙烯基體中的自組織形成的聚異戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱體)可以被臭氧去掉或者通過鋨染色而保留下來。在第一種情況,空洞能夠在氮化硅上產生;在第二種情況,島狀結構能夠產生。目前利用倍塞共聚物光刻技術已制造出GaAs納米結構,結構的側向特征尺寸約為23nm,密度高達1011/cm2。

—與倍塞共聚物圖形制作術緊密相關的一項技術是納米球珠光刻術。此項技術的基本思路是將在旋轉涂敷的球珠膜中形成的圖形轉移到襯底上。各種尺寸的聚合物球珠是商業化的產品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比較困難的。用球珠單層膜已能制備出特征尺寸約為球珠直徑1/5的三角形圖形。雙層膜納米球珠掩膜版也已被制作出。能夠在金屬、半導體以及絕緣體襯底上使用納米球珠光刻術的能力已得到確認。納米球珠光刻術(納米球珠膜的旋轉涂敷結合反應離子刻蝕)已被用來在一些半導體表面上制造空洞和柱狀體納米結構。

—將圖形從母體版轉移到襯底上的其他光刻技術。幾種所謂“軟光刻“方法,比如復制鑄模法、微接觸印刷法、溶劑輔助鑄模法以及用硬模版浮雕法等已被探索開發。其中微接觸印刷法已被證明只能用來刻制特征尺寸大于100nm的圖形。復制鑄模法的可能優點是ellastometric聚合物可被用來制作成一個戳子,以便可用同一個戳子通過對戳子的機械加壓能夠制作不同側向尺寸的圖形。在溶劑輔助鑄模法和用硬模版浮雕法(或通常稱之為納米壓印術)之間的主要差異是,前者中溶劑被用于軟化聚合物,而后者中軟化聚合物依靠的是溫度變化。溶劑輔助鑄模法的可能優點是不需要加熱。納米壓印術已被證明可用來制作具有容量達400Gb/in2的納米激光光盤,在6英寸硅片上刻制亞100nm分辨的圖形,刻制10nmX40nm面積的長方形,以及在4英寸硅片上進行圖形刻制。除傳統的平面納米壓印光刻法之外,滾軸型納米壓印光刻法也已被提出。在此類技術中溫度被發現是一個關鍵因素。此外,應該選用具有較低的玻璃化轉變溫度的聚合物。為了取得高產,下列因素要解決:

1)大的戳子尺寸

2)高圖形密度戳子

3)低穿刺(lowsticking)

4)壓印溫度和壓力的優化

5)長戳子壽命。

具有低穿刺率的大尺寸戳子已經被制作出來。已有少量研究工作在試圖優化壓印溫度和壓力,但顯然需要進行更多的研究工作才能得到溫度和壓力的優化參數。高圖形密度戳子的制作依然在發展之中。還沒有足夠量的工作來研究戳子的壽命問題。曾有研究報告報道,覆蓋有超薄的特氟隆類薄膜的模板可以用來進行50次的浮刻而不需要中間清洗。報告指出最大的性能退化來自于嵌在戳子和聚合物之間的灰塵顆粒。如果戳子是從ellastometric母版制作出來的,抗穿刺層可能需要使用,而且進行大約5次壓印后需要更換。值得關心的其他可能問題包括鑲嵌的灰塵顆引起的戳子損傷或聚合物中圖形損傷,以及連續壓印之間戳子的清洗需要等。盡管進一步的優化和改良是必需的,但此項技術似乎有希望獲得高生產率。壓印過程包括對準、加熱及冷卻循環等,整個過程所需時間大約20分鐘。使用具有較低玻璃化轉換溫度的聚合物可以縮短加熱和冷卻循環所需時間,因此可以縮短整個壓印過程時間。

IV.納米制造所面對的困難和挑戰

上述每一種用于在襯底上圖形刻制的技術都有其優點和缺點。目前,似乎沒有哪個單一種技術可以用來高產量地刻制納米尺度且任意形狀的圖形。我們可以將圖形刻制的全過程分成下列步驟:

1.在一塊模版上刻寫圖形

2.在過渡性或者功能性材料上復制模版上的圖形

3.轉移在過渡性或者功能性材料上復制的圖形。

很顯然第二步是最具挑戰性的一步。先前描述的各項技術,例如電子束光刻或者掃描微探針光刻技術,已經能夠刻寫非常細小的圖形。然而,這些技術都因相當費時而不適于規模生產。納米壓印術則因可作多片并行處理而可能解決規模生產問題。此項技術似乎很有希望,但是在它能被廣泛應用之前現存的嚴重的材料問題必須加以解決。納米球珠和倍塞共聚物光刻術則提供了將第一步和第二步整合的解決方案。在這些技術中,圖形由球珠的尺寸或者倍塞共聚物的成分來確定。然而,用這兩種光刻術刻寫的納米結構的形狀非常有限。當這些技術被人們看好有很大的希望用來刻寫圖形以便生長出有序的納米量子點陣列時,它們卻完全不適于用來刻制任意形狀和復雜結構的圖形。為了能夠制造出高質量的納米器件,不但必須能夠可靠地將圖形轉移到功能材料上,還必須保證在刻蝕過程中引入最小的損傷。濕法腐蝕技術典型地不產生或者產生最小的損傷,可是濕法腐蝕并不十分適于制備需要陡峭側墻的結構,這是因為在掩模版下一定程度的鉆蝕是不可避免的,而這個鉆蝕決定性地影響微小結構的刻制。另一方面,用干法刻蝕技術,譬如,反應離子刻蝕(RIE)或者電子回旋共振(ECR)刻蝕,在優化條件下可以獲得陡峭的側墻。直到今天大多數刻蝕研究都集中于刻蝕速度以及刻蝕出垂直墻的能力,而關于刻蝕引入損傷的研究嚴重不足。已有研究表明,能在表面下100nm深處探測到刻蝕引入的損傷。當器件中的個別有源區尺寸小于100nm時,如此大的損傷是不能接受的。還有就是因為所有的納米結構都有大的表面-體積比,必須盡可能地減少在納米結構表面或者靠近的任何缺陷。

隨著器件持續微型化的趨勢的發展,普通光刻技術的精度將很快達到它的由光的衍射定律以及材料物理性質所確定的基本物理極限。通過采用深紫外光和相移版,以及修正光學近鄰干擾效應等措施,特征尺寸小至80nm的圖形已能用普通光刻技術制備出。然而不大可能用普通光刻技術再進一步顯著縮小尺寸。采用X光和EUV的光刻技術仍在研發之中,可是發展這些技術遇到在光刻膠以及模版制備上的諸多困難。目前來看,雖然也有一些具挑戰性的問題需要解決,特別是需要克服電子束散射以及相關聯的近鄰干擾效應問題,但投影式電子束光刻似乎是有希望的一種技術。掃描微探針技術提供了能分辨單個原子或分子的無可匹敵的精度,可是此項技術卻有固有的慢速度,目前還不清楚通過給它加裝陣列懸臂樑能否使它達到可以接受的刻寫速度。利用轉移在自組裝薄膜中形成的圖形的技術,例如倍塞共聚物以及納米球珠刻寫技術則提供了實現成本不是那么昂貴的大面積圖形刻寫的一種可能途徑。然而,在這種方式下形成的圖形僅局限于點狀或者柱狀圖形。對于制造相對簡單的器件而言,此類技術是足夠用的,但并不能解決微電子工業所面對的問題。需要將圖形從一張模版復制到聚合物膜上的各種所謂“軟光刻“方法提供了一種并行刻寫的技術途徑。模版可以用其他慢寫技術來刻制,然后在模版上的圖形可以通過要么熱輔助要么溶液輔助的壓印法來復制。同一塊模版可以用來刻寫多塊襯底,而且不像那些依賴化學自組裝圖形形成機制的方法,它可以用來刻制任意形狀的圖形。然而,要想獲得高生產率,某些技術問題如穿刺及因灰塵導致的損傷等問題需要加以解決。對一個理想的納米刻寫技術而言,它的運行和維修成本應該低,它應具備可靠地制備尺寸小但密度高的納米結構的能力,還應有在非平面上刻制圖形的能力以及制備三維結構的功能。此外,它也應能夠做高速并行操作,而且引入的缺陷密度要低。然而時至今日,仍然沒有任何一項能制作亞100nm圖形的單項技術能同時滿足上述所有條件。現在還難說是否上述技術中的一種或者它們的某種組合會取代傳統的光刻技術。究竟是現有刻寫技術的組合還是一種全新的技術會成為最終的納米刻寫技術還有待于觀察。

另一項挑戰是,為了更新我們關于納米結構的認識和知識,有必要改善現有的表征技術或者發展一種新技術能夠用來表征單個納米尺度物體。由于自組裝量子點在尺寸上的自然漲落,可信地表征單個納米結構的能力對于研究這些結構的物理性質是絕對至關重要的。目前表征單個納米結構的能力非常有限。譬如,沒有一種結構表征工具能夠用來確定一個納米結構的表面結構到0.1À的精度或者更佳。透射電子顯微術(TEM)能夠用來研究一個晶體結構的內部情況,但是它不能提供有關表面以及靠近表面的原子排列情況的信息。掃描隧道顯微術(STM)和原子力顯微術(AFM)能夠給出表面某區域的形貌,但它們并不能提供定量結構信息好到能仔細理解表面性質所要求的精度。當近場光學方法能夠給出局部區域光譜信息時,它們能給出的關于局部雜質濃度的信息則很有限。除非目前用來表征表面和體材料的技術能夠擴展到能夠用來研究單個納米體的表面和內部情況,否則能夠得到的有關納米結構的所有重要結構和組份的定量信息非常有限。

V.展望

第5篇

1、各國競相出臺納米科技發展戰略和計劃

由于納米技術對國家未來經濟、社會發展及國防安全具有重要意義,世界各國(地區)紛紛將納米技術的研發作為21世紀技術創新的主要驅動器,相繼制定了發展戰略和計劃,以指導和推進本國納米科技的發展。目前,世界上已有50多個國家制定了國家級的納米技術計劃。一些國家雖然沒有專項的納米技術計劃,但其他計劃中也往往包含了納米技術相關的研發。

(1)發達國家和地區雄心勃勃

為了搶占納米科技的先機,美國早在2000年就率先制定了國家級的納米技術計劃(NNI),其宗旨是整合聯邦各機構的力量,加強其在開展納米尺度的科學、工程和技術開發工作方面的協調。2003年11月,美國國會又通過了《21世紀納米技術研究開發法案》,這標志著納米技術已成為聯邦的重大研發計劃,從基礎研究、應用研究到研究中心、基礎設施的建立以及人才的培養等全面展開。

日本政府將納米技術視為“日本經濟復興”的關鍵。第二期科學技術基本計劃將生命科學、信息通信、環境技術和納米技術作為4大重點研發領域,并制定了多項措施確保這些領域所需戰略資源(人才、資金、設備)的落實。之后,日本科技界較為徹底地貫徹了這一方針,積極推進從基礎性到實用性的研發,同時跨省廳重點推進能有效促進經濟發展和加強國際競爭力的研發。

歐盟在2002—2007年實施的第六個框架計劃也對納米技術給予了空前的重視。該計劃將納米技術作為一個最優先的領域,有13億歐元專門用于納米技術和納米科學、以知識為基礎的多功能材料、新生產工藝和設備等方面的研究。歐盟委員會還力圖制定歐洲的納米技術戰略,目前,已確定了促進歐洲納米技術發展的5個關鍵措施:增加研發投入,形成勢頭;加強研發基礎設施;從質和量方面擴大人才資源;重視工業創新,將知識轉化為產品和服務;考慮社會因素,趨利避險。另外,包括德國、法國、愛爾蘭和英國在內的多數歐盟國家還制定了各自的納米技術研發計劃。

(2)新興工業化經濟體瞄準先機

意識到納米技術將會給人類社會帶來巨大的影響,韓國、中國臺灣等新興工業化經濟體,為了保持競爭優勢,也紛紛制定納米科技發展戰略。韓國政府2001年制定了《促進納米技術10年計劃》,2002年頒布了新的《促進納米技術開發法》,隨后的2003年又頒布了《納米技術開發實施規則》。韓國政府的政策目標是融合信息技術、生物技術和納米技術3個主要技術領域,以提升前沿技術和基礎技術的水平;到2010年10年計劃結束時,韓國納米技術研發要達到與美國和日本等領先國家的水平,進入世界前5位的行列。

中國臺灣自1999年開始,相繼制定了《納米材料尖端研究計劃》、《納米科技研究計劃》,這些計劃以人才和核心設施建設為基礎,以追求“學術卓越”和“納米科技產業化”為目標,意在引領臺灣知識經濟的發展,建立產業競爭優勢。

(3)發展中大國奮力趕超

綜合國力和科技實力較強的發展中國家為了迎頭趕上發達國家納米科技發展的勢頭,也制定了自己的納米科技發展戰略。中國政府在2001年7月就了《國家納米科技發展綱要》,并先后建立了國家納米科技指導協調委員會、國家納米科學中心和納米技術專門委員會。目前正在制定中的國家中長期科技發展綱要將明確中國納米科技發展的路線圖,確定中國在目前和中長期的研發任務,以便在國家層面上進行指導與協調,集中力量、發揮優勢,爭取在幾個方面取得重要突破。鑒于未來最有可能的技術浪潮是納米技術,南非科技部正在制定一項國家納米技術戰略,可望在2005年度執行。印度政府也通過加大對從事材料科學研究的科研機構和項目的支持力度,加強材料科學中具有廣泛應用前景的納米技術的研究和開發。

2、納米科技研發投入一路攀升

納米科技已在國際間形成研發熱潮,現在無論是富裕的工業化大國還是渴望富裕的工業化中國家,都在對納米科學、技術與工程投入巨額資金,而且投資迅速增加。據歐盟2004年5月的一份報告稱,在過去10年里,世界公共投資從1997年的約4億歐元增加到了目前的30億歐元以上。私人的納米技術研究資金估計為20億歐元。這說明,全球對納米技術研發的年投資已達50億歐元。

美國的公共納米技術投資最多。在過去4年內,聯邦政府的納米技術研發經費從2000年的2.2億美元增加到2003年的7.5億美元,2005年將增加到9.82億美元。更重要的是,根據《21世紀納米技術研究開發法》,在2005~2008財年聯邦政府將對納米技術計劃投入37億美元,而且這還不包括國防部及其他部門將用于納米研發的經費。

日本目前是僅次于美國的第二大納米技術投資國。日本早在20世紀80年代就開始支持納米科學研究,近年來納米科技投入迅速增長,從2001年的4億美元激增至2003年的近8億美元,而2004年還將增長20%。

在歐洲,根據第六個框架計劃,歐盟對納米技術的資助每年約達7.5億美元,有些人估計可達9.15億美元。另有一些人估計,歐盟各國和歐盟對納米研究的總投資可能兩倍于美國,甚至更高。

中國期望今后5年內中央政府的納米技術研究支出達到2.4億美元左右;另外,地方政府也將支出2.4億~3.6億美元。中國臺灣計劃從2002~2007年在納米技術相關領域中投資6億美元,每年穩中有增,平均每年達1億美元。韓國每年的納米技術投入預計約為1.45億美元,而新加坡則達3.7億美元左右。

就納米科技人均公共支出而言,歐盟25國為2.4歐元,美國為3.7歐元,日本為6.2歐元。按照計劃,美國2006年的納米技術研發公共投資增加到人均5歐元,日本2004年增加到8歐元,因此歐盟與美日之間的差距有增大之勢。公共納米投資占GDP的比例是:歐盟為0.01%,美國為0.01%,日本為0.02%。

另外,據致力于納米技術行業研究的美國魯克斯資訊公司2004年的一份年度報告稱,很多私營企業對納米技術的投資也快速增加。美國的公司在這一領域的投入約為17億美元,占全球私營機構38億美元納米技術投資的46%。亞洲的企業將投資14億美元,占36%。歐洲的私營機構將投資6.5億美元,占17%。由于投資的快速增長,納米技術的創新時代必將到來。

3、世界各國納米科技發展各有千秋

各納米科技強國比較而言,美國雖具有一定的優勢,但現在尚無確定的贏家和輸家。

(1)在納米科技論文方面日、德、中三國不相上下

根據中國科技信息研究所進行的納米論文統計結果,2000—2002年,共有40370篇納米研究論文被《2000—2002年科學引文索引(SCI)》收錄。納米研究論文數量逐年增長,且增長幅度較大,2001年和2002年的增長率分別達到了30.22%和18.26%。

2000—2002年納米研究論文,美國以較大的優勢領先于其他國家,3年累計論文數超過10000篇,幾乎占全部論文產出的30%。日本(12.76%)、德國(11.28%)、中國(10.64%)和法國(7.89%)位居其后,它們各自的論文總數都超過了3000篇。而且以上5國2000—2002年每年的納米論文產出大都超過了1000篇,是納米研究最活躍的國家,也是納米研究實力最強的國家。中國的增長幅度最為突出,2000年中國納米論文比例還落后德國2個多百分點,到2002年已經超過德國,位居世界第三位,與日本接近。

在上述5國之后,英國、俄羅斯、意大利、韓國、西班牙發表的論文數也較多,各國3年累計論文總數都超過了1000篇,且每年的論文數排位都可以進入前10名。這5個國家可以列為納米研究較活躍的國家。

另外,如果歐盟各國作為一個整體,其論文量則超過36%,高于美國的29.46%。

(2)在申請納米技術發明專利方面美國獨占鰲頭

據統計:美國專利商標局2000—2002年共受理2236項關于納米技術的專利。其中最多的國家是美國(1454項),其次是日本(368項)和德國(118項)。由于專利數據來源美國專利商標局,所以美國的專利數量非常多,所占比例超過了60%。日本和德國分別以16.46%和5.28%的比例列在第二位和第三位。英國、韓國、加拿大、法國和中國臺灣的專利數也較多,所占比例都超過了1%。

專利反映了研究成果實用化的能力。多數國家納米論文數與專利數所占比例的反差較大,在論文數最多的20個國家和地區中,專利數所占比例超過論文數所占比例的國家和地區只有美國、日本和中國臺灣。這說明,很多國家和地區在納米技術研究上具備一定的實力,但比較側重于基礎研究,而實用化能力較弱。

(3)就整體而言納米科技大國各有所長

美國納米技術的應用研究在半導體芯片、癌癥診斷、光學新材料和生物分子追蹤等領域快速發展。隨著納米技術在癌癥診斷和生物分子追蹤中的應用,目前美國納米研究熱點已逐步轉向醫學領域。醫學納米技術已經被列為美國國家的優先科研計劃。在納米醫學方面,納米傳感器可在實驗室條件下對多種癌癥進行早期診斷,而且,已能在實驗室條件下對前列腺癌、直腸癌等多種癌癥進行早期診斷。2004年,美國國立衛生研究院癌癥研究所專門出臺了一項《癌癥納米技術計劃》,目的是將納米技術、癌癥研究與分子生物醫學相結合,實現2015年消除癌癥死亡和痛苦的目標;利用納米顆粒追蹤活性物質在生物體內的活動也是一個研究熱門,這對于研究艾滋病病毒、癌細胞等在人體內的活動情況非常有用,還可以用來檢測藥物對病毒的作用效果。利用納米顆粒追蹤病毒的研究也已有成果,未來5~10年有望商業化。

雖然醫學納米技術正成為納米科技的新熱點,納米技術在半導體芯片領域的應用仍然引人關注。美國科研人員正在加緊納米級半導體材料晶體管的應用研究,期望突破傳統的極限,讓芯片體積更小、速度更快。納米顆粒的自組裝技術是這一領域中最受關注的地方。不少科學家試圖利用化學反應來合成納米顆粒,并按照一定規則排列這些顆粒,使其成為體積小而運算快的芯片。這種技術本來有望取代傳統光刻法制造芯片的技術。在光學新材料方面,目前已有可控直徑5納米到幾百納米、可控長度達到幾百微米的納米導線。

日本納米技術的研究開發實力強大,某些方面處于世界領先水平,但尚未脫離基礎和應用研究階段,距離實用化還有相當一段路要走。在納米技術的研發上,日本最重視的是應用研究,尤其是納米新材料研究。除了碳納米管外,日本開發出多種不同結構的納米材料,如納米鏈、中空微粒、多層螺旋狀結構、富勒結構套富勒結構、納米管套富勒結構、酒杯疊酒杯狀結構等。

在制造方法上,日本不斷改進電弧放電法、化學氣相合成法和激光燒蝕法等現有方法,同時積極開發新的制造技術,特別是批量生產技術。細川公司展出的低溫連續燒結設備引起關注。它能以每小時數千克的速度制造粒徑在數十納米的單一和復合的超微粒材料。東麗和三菱化學公司應用大學開發的新技術能把制造碳納米材料的成本減至原來的1/10,兩三年內即可進入批量生產階段。

日本高度重視開發檢測和加工技術。目前廣泛應用的掃描隧道顯微鏡、原子力顯微鏡、近場光學顯微鏡等的性能不斷提高,并涌現了諸如數字式顯微鏡、內藏高級照相機顯微鏡、超高真空掃描型原子力顯微鏡等新產品。科學家村田和廣成功開發出亞微米噴墨印刷裝置,能應用于納米領域,在硅、玻璃、金屬和有機高分子等多種材料的基板上印制細微電路,是世界最高水平。

日本企業、大學和研究機構積極在信息技術、生物技術等領域內為納米技術尋找用武之地,如制造單個電子晶體管、分子電子元件等更細微、更高性能的元器件和量子計算機,解析分子、蛋白質及基因的結構等。不過,這些研究大都處于探索階段,成果為數不多。

歐盟在納米科學方面頗具實力,特別是在光學和光電材料、有機電子學和光電學、磁性材料、仿生材料、納米生物材料、超導體、復合材料、醫學材料、智能材料等方面的研究能力較強。

中國在納米材料及其應用、掃描隧道顯微鏡分析和單原子操縱等方面研究較多,主要以金屬和無機非金屬納米材料為主,約占80%,高分子和化學合成材料也是一個重要方面,而在納米電子學、納米器件和納米生物醫學研究方面與發達國家有明顯差距。

4、納米技術產業化步伐加快

目前,納米技術產業化尚處于初期階段,但展示了巨大的商業前景。據統計:2004年全球納米技術的年產值已經達到500億美元,2010年將達到14400億美元。為此,各納米技術強國為了盡快實現納米技術的產業化,都在加緊采取措施,促進產業化進程。

美國國家科研項目管理部門的管理者們認為,美國大公司自身的納米技術基礎研究不足,導致美國在該領域的開發應用缺乏動力,因此,嘗試建立一個由多所大學與大企業組成的研究中心,希望借此使納米技術的基礎研究和應用開發緊密結合在一起。美國聯邦政府與加利福尼亞州政府一起斥巨資在洛杉礬地區建立一個“納米科技成果轉化中心”,以便及時有效地將納米科技領域的基礎研究成果應用于產業界。該中心的主要工作有兩項:一是進行納米技術基礎研究;二是與大企業合作,使最新基礎研究成果盡快實現產業化。其研究領域涉及納米計算、納米通訊、納米機械和納米電路等許多方面,其中不少研究成果將被率先應用于美國國防工業。

美國的一些大公司也正在認真探索利用納米技術改進其產品和工藝的潛力。IBM、惠普、英特爾等一些IT公司有可能在中期內取得突破,并生產出商業產品。一個由專業、商業和學術組織組成的網絡在迅速擴大,其目的是共享信息,促進聯系,加速納米技術應用。

日本企業界也加強了對納米技術的投入。關西地區已有近百家企業與16所大學及國立科研機構聯合,不久前又建立了“關西納米技術推進會議”,以大力促進本地區納米技術的研發和產業化進程;東麗、三菱、富士通等大公司更是紛紛斥巨資建立納米技術研究所,試圖將納米技術融合進各自從事的產業中。

歐盟于2003年建立納米技術工業平臺,推動納米技術在歐盟成員國的應用。歐盟委員會指出:建立納米技術工業平臺的目的是使工程師、材料學家、醫療研究人員、生物學家、物理學家和化學家能夠協同作戰,把納米技術應用到信息技術、化妝品、化學產品和運輸領域,生產出更清潔、更安全、更持久和更“聰明”的產品,同時減少能源消耗和垃圾。歐盟希望通過建立納米技術工業平臺和增加納米技術研究投資使其在納米技術方面盡快趕上美國。

第6篇

查看更多《新型炭材料》雜志社信息請點擊: 《新型炭材料》編輯部

研究論文

(1)多壁納米碳管對磷酸鐵鋰正極材料熱穩定性及表面形貌的影響 mária filkusová andrea fedorková renáta

oriňáková andrej oriňák2 zuzana nováková lenka ?kantárová

動態

(7)第十一屆全國新型炭材料學術研討會征文通知 無

研究論文

(8)氧化硅包覆單壁碳納米管納米電纜的制備 張艷麗 侯鵬翔 劉暢

動態

(13)thc系列耐高溫阻燃熱固性酚醛樹脂 無

研究論文

(14)多壁碳納米管的對氨基苯磺酸鈉修飾及對cu^2+的吸附性能 鄭凈植 胡建 杜飛鵬

動態

(19)《新型炭材料》2011年sci影響因子0.914 無

研究論文

(20)磁場處理對ldpe及其碳納米管復合材料電導特性的影響 韓寶忠 馬鳳蓮 郭文敏 王艷潔 蔣慧

動態

(25)西安誠瑞科技發展有限公司 高低溫炭化爐、液相(氣相)沉積爐、石墨化爐 無

研究論文

(26)碳納米管/鐵氰化鎳/聚苯胺雜化膜對抗壞血酸的電催化氧化 馬旭莉 孫守斌 王忠德 楊宇嬌 郝曉剛 臧楊 張忠林 劉世斌

(33)水輔助化學氣相沉積制備定向碳納米管 劉庭芝 劉勇 多樹旺 孫曉剛 黎靜

(39)通過高溫裂解酚醛樹脂制備氣體分離用炭膜——裂解溫度及臭氧后處理的作用分析 mohammad mahdyarfar toraj

mohammadi ali mohajeri

動態

(46)納米植物炭黑 無

研究論文

(47)中孔炭負載二氧化鈦光催化劑的制備及降解甲基橙 因博 王際童 徐偉 龍東輝 喬文明 凌立成

(55)co2捕集用具有多級孔結構納米孔炭的制備 唐志紅 韓卓 楊光智 趙斌 沈淑玲 楊俊和

研究簡報

(61)高分散性氧化石墨烯基雜化體的制備及其熱穩定性增強 張樹鵬 宋海歐

(66)相互連接的碳微米球的制備與磁性 文劍鋒 莊葉 湯怒江 呂麗婭 鐘偉 都有為

(71)碳化物衍生碳涂層的表面劃痕織構能降低摩擦 眭劍 呂晉軍

動態

(75)instructions to authors 無

第7篇

英文名稱:Nanotechnology and Precision Engineering

主管單位:教育部

主辦單位:天津大學

出版周期:雙月刊

出版地址:天津市

種:中文

本:大16開

國際刊號:1672-6030

國內刊號:12-1351/O3

郵發代號:6-177

發行范圍:國內外統一發行

創刊時間:2003

期刊收錄:

CA 化學文摘(美)(2009)

Pж(AJ) 文摘雜志(俄)(2009)

EI 工程索引(美)(2009)

中國科學引文數據庫(CSCD―2008)

核心期刊:

期刊榮譽:

聯系方式

期刊簡介

第8篇

青島科技大學化學與分子工程學院的前身是1988年成立的應化系。2001年3月更名為化學與分子工程學院,經過20多年的建設,現已形成以應用化學學科為支撐,多學科協調發展的辦學特色,初步發展成為以理工為主的教學研究型學院。羅細亮這次獲得資助也意義非凡,不僅展示了青島科技大學在化學研究方面的實力,而且給青島科技大學帶來了一股青春助力科研的新浪潮。

開啟電分析化學之路

1995年,羅細亮高考失利,面對高出分數線僅一分的高考成績,他很是糾結。一心向往的上海交通大學肯定是無望了,擺在他面前的,只有兩條路:要么復讀,要么去青島化工學院(現為青島科技大學)應用化學系報到。思量再三,羅細亮選擇了后者,進入算不上一級學府的青島化工學院。這樣的決定對于當時那些建議羅細亮復讀的人來說也許不是最好的選擇,但是對于如今的羅細亮來說卻是他當年最正確的選擇。

青島化工學院是最早有碩士點的高校之一,可以繼續深造。從大一報到之日起,羅細亮的目標就是深造,他要靠自己的力量改變人生軌跡。

學校并沒有讓羅細亮失望,他到校后發現,學校里的教授們教學水平很高,很重視學生的動手能力,實驗課時十分充足。不僅如此,青島化工學院的老師們對學生們一向要求嚴格,羅細亮還記得,當時他的畢業設計把實驗做壞了,為此挨了老師的不少批評,直到他把實驗做得完美,才過了老師的那一關。“正是因為我在學校時打下了扎實的基礎,所以日后,當我在南京大學讀博士及國外做博士后時,我的動手能力比其他名校來的學生甚至還要強。”羅細亮回憶道。

大學四年的學習生活很快就過去了,羅細亮不忘初衷,決定考研,這次沒有猶豫,沒有懷疑,他直接考取了本校研究生,跟隨當時的校長、知名的學者焦奎教授,開始從事電分析化學的研究。2002年,碩士研究生學習結束后,他聽取導師的建議考取了南京大學攻讀博士,師從著名的分析化學家陳洪淵教授。從此,羅細亮牢牢的把握著自己的人生軌跡。

接下來的2005~2011年間,羅細亮先后在愛爾蘭都柏林城市大學國家傳感器研究中心、美國亞利桑那州立大學生物設計研究院及匹茲堡大學生物工程系從事博士后研究。2011年2月獲歐盟瑪麗居里學者,同年3月被美國匹茲堡大學聘為研究助理教授。

正當羅細亮在國外的發展順風順水的時候,他接到了母校青島科技大學拋來的橄欖枝,希望他回母校工作,并申請山東省的泰山學者特聘教授。飲水思源,不可忘本,羅細亮當機立斷,放棄了即將到手的綠卡,辭去了國外的工作,帶著妻子和一雙兒女,毅然回到了祖國,回到了青島科技大學。

享受科研之趣

科研路上總是層巒疊嶂,沒有盡頭。作為科研人,如果沒有點執著的勁頭,就意味著終有一天你會在某一個山頭前停滯不前。而對羅細亮來說,他熱愛科研,享受科研的樂趣,在科研的路上,執著地翻過一坐又一坐高山。

在南京大學讀博士期間,羅細亮在導師陳洪淵院士和徐靜娟教授的指導下,開創了利用電沉積殼聚糖固定生物識別分子制備生物傳感器的方法。

在制備生物傳感器的過程中,最關鍵的步驟是生物識別分子的固定。實現生物識別分子簡便、有效的固定,而又同時盡可能地保持其活性,一直是世界上眾多科學家孜孜以求的目標。利用生物聚合物殼聚糖的電沉積特性和良好的生物相容性,羅細亮率先提出了通過電化學沉積殼聚糖,用于同時或依次固定納米材料和生物識別分子制備生物傳感器的方法。通過這種方法制備生物傳感器,簡單有效且條件溫和,普遍能夠得到理想的結果。該方法提出后在國際上廣受關注,目前已經被中、美、日和歐洲等30多個國家和地區的科學家們所廣泛借鑒和采用,成為了比較有代表性的生物分子固定化和生物傳感器制備方法之一。基于這一研究成果發表的3篇主要研究論文至今已被他人引用超過500次。尤其值得指出的是,美國一流大學馬里蘭大學Gregory Payne教授領導的研究組,在他們發表的20余篇高水平論文里,高度評價了羅細亮的研究工作,明確表示羅細亮的研究工作是這方面最早的相關報道。2007年,羅細亮的博士學位論文在被相繼評為南京大學優秀博士學位論文和江蘇省優秀博士學位論文之后,又獲得全國百篇優秀博士學位論文提名獎。

科研永不止步

羅細亮并沒有就此止步,為了進一步提升自己的科研水平,2005年,羅細亮申請了國外的博士后,先后赴愛爾蘭都柏林城市大學和美國亞利桑那州立大學,跟隨愛爾蘭皇家科學院院士Malcolm Smyth教授和世界著名分析化學家Joseph Wang教授,在分析化學領域深造。2008年,考慮到生物化學與分析化學的結合日益緊密,而自己又缺乏生物的研究背景,為了拓展自己的研究方向,羅細亮又申請去了美國匹茲堡大學生物工程系,使自己的研究從化學和材料拓展到生物領域,有利于實現不同學科的相互交叉。

博士后研究期間,羅細亮在化學、材料和生物這幾個學科的交叉領域,開展了一系列研究,并取得了豐碩的研究成果。其中比較突出的貢獻是,構建了新穎的藥物釋放體系,在國際上率先實現了利用碳納米管內腔來儲存和可控釋放藥物。

碳納米管是目前國際上研究的熱點,由于它特殊的物理化學性質,其在藥物可控遞送和釋放方面的應用研究廣受關注。理論上,碳納米管的內腔是儲存藥物的理想納米膠囊,但是如何實現藥物在碳納米管內的儲存和釋放,一直是個沒有解決的難題。羅細亮的研究實現了利用碳納米管的內管來裝載藥物。儲存的藥物,通過簡便的電化學刺激就能夠以可控的方式釋放出來,而且進一步的細胞實驗證實由此釋放出來的藥物仍然保持有藥物活性。這是首次報道利用碳納米管的內管來裝載并可控釋放保持有活性的藥物,研究結果發表在本領域頂尖期刊生物材料上,并被美國能源部的能源技術國家實驗室作為新聞報道,認為這項技術將有效促進神經控制可植入裝置的發展。

羅細亮還發展了新穎的可控合成單根導電聚合物納米線的方法,并研制了超靈敏的單根納米線生物傳感器。

利用單根納米線來構建具有優異性能的納米裝置或器件,是目前世界上眾多科學家所努力的前沿方向,但是單根納米線在可控合成尤其是操控上的困難極大阻礙了這方面研究的進展。羅細亮制備了具有高度選擇性和靈敏度的納米生物傳感器,其檢測限低于1皮克每毫升,遠遠優越于其他類似的生物傳感器。由于該傳感器從合成到檢測都采用可控的電化學技術,非常適合進一步研制超靈敏、集成化的納米傳感系統。

2011年,對于35歲的羅細亮來說,是非常特別的一年。當年2月,羅細亮獲得歐盟第七框架計劃國際合作項目的資助,成為英國牛津大學化學系的高級瑪麗居里學者;3月,羅細亮被美國匹茲堡大學聘為研究助理教授,進入大學的教員系列;8月,羅細亮被山東省人民政府選聘為泰山學者特聘教授。不同的機遇,在短時間內集中出現,通常會讓人難以取舍。然而羅細亮沒有過多的猶豫,他選擇了回國發展。要為祖國貢獻自己的微薄力量,是他很早就形成了的一個樸素的觀念。

2011年9月,羅細亮離開美國匹茲堡大學,回到了母校青島科技大學。環境和條件的改變,不可避免會影響到自己的科研,為了把不利影響降到最小,羅細亮付出了幾倍于別人的辛勞。他克服種種困難,從零開始組建自己的科研團隊,建設自己的實驗室,培養自己的研究生。同時,利用與國外的聯系,羅細亮積極開展對外的合作交流,及時掌握國內外的研究動態。回國后的3年時間里,羅細亮基本上沒有完整的節假日。3年過去,羅細亮自己的實驗室和研究團隊已經初具規模,逐步地發展壯大,并在生化分析領域開展了比較有影響的研究工作。尤其重要的是,羅細亮首次構建了基于電化學阻抗技術的抗污染生物傳感器,推進了可在復雜生物體系中直接測定的實用型傳感器件的發展。

在實際生物樣品中以免標記的方法直接檢測蛋白質,一直是國際上的研究熱點,但是由于生物樣品中其它成分的污染和干擾,多數生物傳感器只能在緩沖溶液或高倍數稀釋的樣品中使用。羅細亮研發的生物傳感器,既可以方便地固定生物識別分子,又可以有效防止蛋白質的非特異性吸附。結合非法拉第型電化學阻抗檢測技術的高靈敏度,該生物傳感器可以對血液中的胰島素進行直接檢測而基本上不受污染和干擾。該生物傳感器的檢測結果與醫院的報告結果偏差相對很小,在疾病標志物的臨床檢測等方面顯示出極大的優越性。相關研究結果發表在分析化學領域的權威期刊美國分析化學上。羅細亮的這一抗污染生物傳感器方面的研究結果,發表后很快就受到美國著名的分析化學家James F. Rusling教授的關注,他在為美國分析化學撰寫的前瞻性評述論文中認為,該成果有望解決眾多生物傳感器所面臨的非特異性吸附的難題。

第9篇

IUTAM執行局是IUTAM各項決策的具體執行機構,一般由主席、副主席、司庫和4位執委組成,共計8位,是IUTAM的最高領導層。此前,我國學者王仁(1996~2000年)、鄭哲敏(2004~2008年)分別擔任過執委一職。中國學者在國際組織中擔任重要職務將提升我國在國際力學界的話語權。

IUTAM 大會委員會是一個常設委員會,負責每4 年1 次的世界力學家大會(ICTAM) 的組織工作。此前,我國學者周培源、林同驥、錢令希、鄭哲敏、王仁、莊逢甘、程耿東、白以龍分別擔任過大會委員會委員。

楊衛院士獲西北工業大學學士學位,清華大學碩士學位、美國布朗大學博士學位,中國科學院院士,發展中國家科學院院士。1978~2004年在清華大學任教,曾任工程力學系主任、校學術委員會主任等職。1999~2004年任教育部長江學者特聘教授。2004~2006年任國務院學位辦主任。2006年8月起任浙江大學校長。曾任《力學學報》和Acta Mechanica Sinica主編,國際理論與應用力學聯合會(IUTAM)全委會委員等。現任中國力學學會副理事長,IUTAM執行局委員。從事斷裂力學、細觀與納米力學研究。在宏微觀斷裂方面,解出動態分層和跨音速分層的裂尖奇異場;編輯Elsevier大型手冊《結構完整性大全》第8卷《界面與納觀斷裂》;提出電致斷裂、電致疲勞裂紋控制和電致疇變增韌的模型;擔任亞太斷裂學會主席。在細觀與納米力學方面,撰寫英文專著《細觀塑性及應用》,闡述細觀塑性理論的主要框架;近年在納米晶體塑性理論和納米結構的數值模擬等方面做出新工作,論文在PRL,NanoLetters,PNAS等高影響因子的期刊上發表;現任IUTAM微納米力學工作委員會主席。成果《固體材料的宏細觀本構理論與斷裂》獲得國家自然科學三等獎;成果《鐵電陶瓷的力電耦合失效與本構關系》獲得國家自然科學二等獎(均為第一完成人)。獲得何梁何利獎。發表學術論著11部,國際期刊論文180篇,被SCI引用超過1600次。

相關文章
相關期刊
国产视频一区二区三区在线播放| 97超碰人人爱| 欧美视频在线观看一区二区三区| 日韩专区一卡二卡| 91国在线精品国内播放| 久草视频手机在线观看| 亚洲婷婷综合网| 久草福利在线视频| 不卡的av电影在线观看| 97人摸人人澡人人人超一碰| 久久嫩草捆绑紧缚| 成年人视频免费在线观看| 99久久精品国产毛片| 国产精品福利视频| 亚洲老妇色熟女老太| 麻豆精品一二三| 国产色综合天天综合网| 伊人网视频在线| 青青草伊人久久| 国产精品爽黄69天堂a| 国产女优在线播放| 日韩黄色小视频| 国产精品一区二区三区久久久| 日批视频免费观看| 久久综合网络一区二区| 国产精品免费小视频| 国产又大又黄又爽| 久久99精品视频| 亚洲精品免费av| 韩国av永久免费| 懂色中文一区二区在线播放| 国产日韩在线一区二区三区| 美女被人操视频在线观看| 成人av免费观看| 欧美精品一区二区三区在线看午夜 | 国产成人av免费观看| 国产精品免费精品自在线观看| 日韩精品一区二区三区四区视频| 黄色免费视频网站| 欧美电影在线观看完整版| 亚洲欧美精品伊人久久| 五月天免费网站| 亚洲激情久久| 日韩免费在线免费观看| 国产精品污视频| 国产一区二区精品在线观看| 亚洲a区在线视频| 欧美一级特黄aaaaaa大片在线观看| 成人av免费网站| 天堂社区 天堂综合网 天堂资源最新版 | 无码国产精品一区二区高潮| 日韩av综合| 亚洲美女av网站| 在线观看亚洲网站| 亚洲香蕉网站| 国产精品无码专区在线观看| 欧美 日韩 国产 在线| 91麻豆精品在线观看| 中文字幕久久综合| 丝袜在线观看| 欧美四级电影在线观看| 一级黄色片毛片| 免费看成人哺乳视频网站| 美女999久久久精品视频| 一级片视频在线观看| 人人狠狠综合久久亚洲| 国内外成人免费视频| 黄色在线网站| 亚洲大片在线观看| 亚洲欧美手机在线| 国产欧美自拍一区| 欧美成人性生活| 夜夜躁日日躁狠狠久久av| 国产精品亚洲成人| 亚洲欧美久久234| 日本欧美电影在线观看| 欧美亚一区二区| 国产伦精品一区二区三区妓女| 加勒比久久综合| 7777精品久久久久久| 国产成人精品一区二区无码呦| 成人avav影音| 99热这里只有精品免费| 韩国主播福利视频一区二区三区| 欧美成人伊人久久综合网| 女性裸体视频网站| 亚洲一级在线| 国模精品一区二区三区| 欧美成人hd| 欧美亚洲一区二区在线观看| 日韩一级视频在线观看| 中文字幕av亚洲精品一部二部| 国产精品久久一区| 一二三区在线| 五月婷婷综合网| 性色av蜜臀av浪潮av老女人| 希岛爱理av一区二区三区| 国产精品欧美一区二区| 无圣光视频在线观看| 亚洲一区二区高清| 特级特黄刘亦菲aaa级| 97国产精品| 91精品久久久久久久久久另类| 最近最新中文字幕在线| 亚洲成人激情综合网| 9.1在线观看免费| 亚洲精品二区三区| 91久久精品一区二区别| 日本中文字幕在线观看| 欧美美女黄视频| 永久免费看片视频教学| 日本最新不卡在线| 亚洲最新在线| 日本一区二区三区视频在线| 一区二区三区天堂av| 亚洲天堂男人网| 欧美国产日产图区| 五月婷婷之婷婷| 日韩大片在线| 成人午夜一级二级三级| 日本三级在线播放完整版| 欧美精品粉嫩高潮一区二区| www.99re7| 国产一区在线看| 国产又粗又长又爽视频| 国产一区二区高清在线| 欧美激情在线观看视频| 22288色视频在线观看| 亚洲成人精品一区二区| 国产成人无码精品久久二区三| 夜夜嗨一区二区三区| 欧美影视一区二区| 成人国产一区| 精品自在线视频| 天天操天天射天天舔| 午夜精品福利久久久| 日韩人妻一区二区三区| 三级影片在线观看欧美日韩一区二区| 日韩高清在线播放| 国产成人精品一区二区三区免费| 久久九九热免费视频| 刘玥91精选国产在线观看| 亚洲大片在线观看| 成人在线观看免费高清| 美女国产一区二区| www.日本少妇| 亚洲黄页网站| 亚洲va欧美va在线观看| 波多野结衣在线播放| 国产一区二区黑人欧美xxxx| 99er热精品视频| 亚洲午夜精品17c| 白白色免费视频| 久久91精品国产91久久小草 | 国产经典三级在线| 在线a欧美视频| 亚洲精品一区二区三区新线路| 午夜a成v人精品| 9999热视频| 成人精品在线视频观看| 午夜两性免费视频| 欧美日韩网址| 亚洲永久激情精品| 97久久亚洲| 国产一区视频在线播放| 久久不射影院| 日韩最新免费不卡| 极品粉嫩饱满一线天在线| 欧美视频完全免费看| 久久久精品免费看| 中文字幕一区在线观看视频| 日韩av一二区| 韩国成人在线视频| 天堂中文视频在线| 亚洲视频免费| 四虎免费在线观看视频| 欧美亚洲色图校园春色| 97久草视频| 日韩精品一区二区三区| 91国语精品自产拍在线观看性色 | 国内精品写真在线观看| 别急慢慢来1978如如2| 亚洲电影在线一区二区三区| 日韩一区二区三区高清| av日韩精品| 91香蕉电影院| **在线精品| 国产69久久精品成人| 麻豆tv入口在线看| 日韩中文在线中文网三级| 在线看a视频| 精品国产乱子伦一区| 国产不卡精品视频| 欧美色网一区二区| 日韩精品在线一区二区三区| 亚洲成人中文在线| 日本熟伦人妇xxxx| 亚洲精品少妇30p| 登山的目的在线| 国产日韩一级二级三级| 日韩人妻无码一区二区三区| 成人中文字幕电影| 一边摸一边做爽的视频17国产 | 国产亚洲情侣一区二区无| 福利一区视频| 国产免费成人av| 香蕉视频亚洲一级| 国产精品99久久久久久白浆小说 | 狂野欧美激情性xxxx欧美| 美女啪啪无遮挡免费久久网站| av资源种子在线观看| 在线丨暗呦小u女国产精品| 视频一区二区在线播放| 日韩精品在线免费观看视频| x88av蜜桃臀一区二区| 亚洲精品一区二区三区四区高清| 亚洲大尺度网站| 欧美一区二区三区四区五区| 亚洲国产精品suv| 日韩一级免费观看| 欧美综合视频在线| 精品第一国产综合精品aⅴ| 天天干,夜夜爽| 亚洲精品久久久久久久久久久| 亚洲aaaaaaa| 日韩av影院在线观看| 污网站在线观看视频| 一本色道久久综合狠狠躁篇的优点 | 99国产精品久久久久久久久久久| 亚洲一区二区三区四区五区六区| 成人午夜视频福利| 性高潮久久久久久久 | 国产午夜在线播放| 精品国产91久久久| 在线观看av大片| 欧美美女网站色| 少妇人妻偷人精品一区二区| 亚洲精品乱码久久久久久按摩观| 在线观看国产麻豆| 影音先锋日韩有码| 黄色网页在线观看| 久久久日本电影| 中文日产幕无线码一区二区| 国产伦精品一区二区三区精品视频| 精品176极品一区| 国产精品久久久久久久小唯西川| 国产成人一二| 夜夜爽www精品| 91精品观看| 国产精品99久久免费黑人人妻| 日韩经典一区二区| 亚洲一二三四五| 91看片淫黄大片一级| 中文字幕在线2021| 午夜欧美大尺度福利影院在线看| 欧美 亚洲 另类 激情 另类| 欧美一区二区三区播放老司机| 黄页网址大全在线观看| 中文字幕在线视频日韩| 欧美亚洲系列| 国产精品夜间视频香蕉| 日日夜夜精品视频| 色涩成人影视在线播放| 午夜精品电影| 羞羞的视频在线| 国产91丝袜在线18| 小嫩苞一区二区三区| 亚洲妇女屁股眼交7| 国产精品久久久久久久久久久久久久久久久久 | 久久久噜噜噜久噜久久| 日本国产欧美| 精品国产一二| 99久久夜色精品国产亚洲1000部 | 国产91精品在线观看| 99久久久无码国产精品不卡| 亚洲影院理伦片| 国产精品一级二级| 精品一区二区亚洲| 国产cdts系列另类在线观看| 国产精品精品一区二区三区午夜版 | 午夜精品视频在线观看| www.香蕉视频| 中文字幕精品一区久久久久 | 老司机亚洲精品| 欧美肉大捧一进一出免费视频| 中文字幕一区在线| 中文字幕在线播放不卡| 亚洲韩国日本中文字幕| 黄色免费在线网站| 国产综合久久久久久| 在线日韩网站| 国产日韩一区二区在线| 国产一区不卡在线| 日韩一区二区三区四区在线| 色诱视频网站一区| 久草视频在线播放| 欧美激情一区二区三区成人 | 成人午夜免费在线| 国产在线不卡一区| 好吊日在线视频| 欧美性色欧美a在线播放| 中文字幕中文字幕在线中文字幕三区| 久久久久久国产精品久久| 亚洲精品一区av| 99re99热| 蜜臀精品久久久久久蜜臀 | 99热99这里只有精品| 日本道在线观看一区二区| 最新中文字幕在线视频| 97精品国产97久久久久久春色| 电影91久久久| 青青草视频在线视频| 精久久久久久久久久久| www.5588.com毛片| 欧美狂野另类xxxxoooo| 爱爱爱免费视频在线观看| 国产欧美亚洲精品| 日韩欧美国产精品综合嫩v| 国产精品嫩草影院8vv8| 国产精品理论片| 国产女人18毛片18精品| 日韩中文字幕亚洲| 欧美亚洲黄色| 激情五月五月婷婷| 国产一区久久久| 国产一级视频在线观看| 欧美成人在线直播| 暧暧视频在线免费观看| 欧美18视频| 久热综合在线亚洲精品| 黄色一级片一级片| 欧美日韩精品一区二区三区| 午夜视频在线| 福利视频久久| 国产欧美精品| 精品一区二区在线观看视频| 欧美日韩大陆一区二区| 黄色免费在线观看网站| 国产综合av一区二区三区| 国产精品亚洲欧美| jizzjizz日本少妇| 欧美精品在线观看播放| 中文字幕资源网在线观看| 久久久精彩视频| 噜噜噜在线观看免费视频日韩| 久久久久久成人网| 717成人午夜免费福利电影| 1区2区在线观看| 欧美午夜精品久久久久免费视| 视频在线观看91| 欧美极品aaaaabbbbb| 亚洲第一区第一页| 日本电影欧美片| 日本男女交配视频| 91麻豆免费观看| 国产ts变态重口人妖hd| 性色av一区二区三区在线观看 | 国产精品国产三级国产专播品爱网| 午夜精品无码一区二区三区| 91成人在线观看国产| 深爱激情久久| 丰满少妇中文字幕| 欧美视频中文在线看| av影片在线看| 看欧美日韩国产| 精品一区二区免费| 无码人妻丰满熟妇精品区| 色老头一区二区三区在线观看| 免费一区二区三区在线视频| 黄色片在线免费| 亚洲色图在线看| 一级片免费在线观看| 亚洲一区中文字幕在线观看| 亚洲综合三区| 麻豆一区二区三区精品视频| 亚洲女同精品视频| 国产精品日本一区二区不卡视频| 国产欧美在线一区| 亚洲精品大片www| 国产三级在线| 精品免费视频123区| 久久成人av少妇免费| 最近中文字幕在线观看| 国外成人性视频| 国产精品成人a在线观看| 性猛交娇小69hd| 亚洲第一福利网站| 欧美9999| 一级黄色免费毛片| 欧美在线观看视频一区二区 | 亚洲综合小说区| 老司机精品导航| 69xxxx国产| 97香蕉超级碰碰久久免费的优势| 99久久亚洲精品蜜臀| 日韩精品一区二区三区在线视频| 日韩成人在线视频观看| 日本免费一区二区视频| aaaaaaaa毛片| 欧美精品1区2区3区|